Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS Pathog ; 18(6): e1010588, 2022 06.
Article in English | MEDLINE | ID: covidwho-1902649

ABSTRACT

As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386-563 and 386-510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , COVID-19 , Active Transport, Cell Nucleus , Adenoviridae/genetics , Adenoviruses, Human/genetics , Humans , Molecular Chaperones , Nuclear Pore Complex Proteins , RNA, Small Interfering , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases , Viral Proteins/genetics
2.
Signal Transduct Target Ther ; 7(1): 7, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1606287

ABSTRACT

Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.


Subject(s)
AIDS Vaccines/immunology , B-Cell Activating Factor/immunology , COVID-19 Vaccines/immunology , Cytidine Deaminase/immunology , HIV-1/immunology , Nanoparticles , SARS-CoV-2/immunology , Signal Transduction/immunology , Ubiquitin Thiolesterase/immunology , Ubiquitination/immunology , AIDS Vaccines/genetics , Animals , B-Cell Activating Factor/genetics , COVID-19 Vaccines/genetics , Cytidine Deaminase/genetics , HEK293 Cells , HIV-1/genetics , Humans , Mice , Mice, Knockout , SARS-CoV-2/genetics , Signal Transduction/genetics , Ubiquitin Thiolesterase/genetics
3.
Front Immunol ; 12: 677025, 2021.
Article in English | MEDLINE | ID: covidwho-1403470

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current understanding of the host immune response to SARS-CoV-2 infection remains limited. Herein, we performed RNA sequencing using peripheral blood from acute and convalescent patients and interrogated the dynamic changes of adaptive immune response to SARS-CoV-2 infection over time. Our results revealed numerous alterations in these cohorts in terms of gene expression profiles and the features of immune repertoire. Moreover, a machine learning method was developed and resulted in the identification of five independent biomarkers and a collection of biomarkers that could accurately differentiate and predict the development of COVID-19. Interestingly, the increased expression of one of these biomarkers, UCHL1, a molecule related to nervous system damage, was associated with the clustering of severe symptoms. Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the acute phase and declined thereafter, whereas T-cell response can be maintained for up to 6 months post-infection onset and T-cell clonality was positively correlated with the serum level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as well as the abnormally high levels of B-cell response in acute infection, may contribute to the pathogenesis of COVID-19 through mediating inflammation and immune responses, whereas prolonged T-cell response in the convalescents might help these patients in preventing reinfection. Thus, our findings could provide insight into the underlying molecular mechanism of host immune response to COVID-19 and facilitate the development of novel therapeutic strategies and effective vaccines.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/chemistry , Transcriptome , Adult , Aged , Antibodies, Viral/blood , B-Lymphocytes/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/virology , China , Cohort Studies , Female , Humans , Leukocytes, Mononuclear/immunology , Machine Learning , Male , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA , T-Lymphocytes/immunology , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL